
Rifidi® Edge Server Developer’s
Guide

Version 3.2 (Rifidi® Edge Server version 3.2)

March 2015

2

Table of Contents

Overview ... 5

Getting Started with the SDK .. 5

Overview of SDK .. 5

Documentation ... 5

Setting up a Development Environment .. 6

Importing a Project Template ... 6

Running the project .. 6

Setting up Configuration Files (optional) .. 6

Additional Development using Jumpstart Examples .. 7

Rifidi® Edge Server How-To’s .. 7

Viewing and Modifying the Rifidi® Source Code ... 7

Build Rifidi® Edge Server from Source .. 8

Best Practice for Designing a Rifidi® Application .. 8

Rifidi® Edge Server Architecture ... 9

Sensor Abstraction Layer .. 9

Application Engine Layer ... 10

Communication Layer ... 10

Operations, Administration & Management Layer .. 10

Sensor Layer .. 10

Creating a New Sensor Adapter .. 11

Anatomy of a Sensor Plugin .. 11

Sensor Sessions ... 12

AbstractSensorSession .. 13

AbstractIPSensorSession ... 13

AbstractServerSocketSensorSession ... 13

AbstractSerialSensorSession ... 13

Sensors .. 14

Sensor Factories .. 14

3

Persistence .. 14

General Purpose I/O ... 14

Tag Writing .. 15

LLRP Encode Response .. 16

LLRP Encode Operations Response (if asynchronous) .. 16

LLRP Encode Single Shot Command .. 17

LLRP Encode Single Shot Operations Response .. 18

Application Layer .. 18

Rifidi® Application API ... 18

Lifecycle Management .. 20

Configuration Management .. 20

Properties .. 21

Read Zones .. 22

Advanced Read Zone Filtering .. 23

Data Files ... 23

Esper Management ... 23

Statements .. 23

Custom Event Types .. 24

Plugging into the OSGi console ... 24

Rifidi® Services .. 24

Read Zone Monitoring Service .. 25

Stable Set Service .. 25

Unique Tag Batch Interval Service .. 25

Unique Tag Interval Service .. 26

Sensor Status Monitoring Service .. 26

RSSI Monitoring Service .. 26

How to add a new Service ... 27

Diagnostic Applications ... 28

GPIO .. 28

Serial.. 28

Tags ... 29

Tag Generator ... 29

4

Exposures Files .. 29

Tag Files ... 30

Integration Layer ... 30

JMS .. 30

Edge Messaging - MQTT ... 30

Databases .. 30

RMI .. 31

How to connect Rifidi via RMI Client .. 31

Amazon AWS ... 31

Operations, Administration & Management Layer .. 31

Management ... 31

Monitoring .. 32

Exporting and Deploying ... 32

Performance Tuning.. 32

Examples ... 33

HelloWorld Application ... 33

Database Application .. 33

Northwind Application .. 34

Dynamic Reader Configuration Example .. 34

5

Overview
The Rifidi® Edge Server is an application platform that provides developers with a way to quickly develop

and deploy RFID applications. This document describes the features and tools available to application

developers in the Rifidi® Edge Server Standard Development Kit (SDK).

Getting Started with the SDK
This chapter will help you get started using the Rifidi® Edge Server SDK. It describes the structure of the

SDK, how to set up a development environment, and how to create your first Rifidi® application project,

how to export and deploy it.

Overview of SDK
The SDK contains the following files and folders:

 examples – Contains example Rifidi® applications including a template to help you get started

 lib – Contains all the code necessary to run the Rifidi® Edge Server.

 docs – Contains all the documentation

 launch file – The default run configuration to run the edge server from within eclipse

 target file – The file that tells eclipse where to find the necessary dependencies to run the edge

server

Documentation
There are several places to look for specific documentation needs

 The User Documentation is a PDF that explains how to run and control the Rifidi® Edge Server

 The Developer Documentation (this document) explains how to develop an RFID application that

runs on the Rifidi® Edge Server, or reader adapters and plugins for our Edge Server

 The Javadoc for the Rifidi® API can be found online at

http://www.transcends.co/www/javadoc/edge3.2.0/

 The wiki has some helpful pages to answer some common questions that users and developers

have. It can be found at http://wiki.rifidi.net

 The forums provide a way for users and developers to ask questions. It can be found online at

http://forums.rifidi.net

http://wiki.rifidi.net/index.php?title=User%27s_Guide
http://www.transcends.co/www/javadoc/edge3.2.0/
http://wiki.rifidi.net/
http://forums.rifidi.net/

6

Setting up a Development Environment
In order to develop a Rifidi® application, you will need to use Eclipse. Please follow the instructions on

this wiki page to import the SDK into your eclipse workspace.

Importing a Project Template
Now that you’ve set up your development environment, you will want to create a Rifidi® application

project. Instead of following step by step instructions on how to set up an application, it is

recommended that you import a project template from the examples directory in the SDK. To do this,

1. File->Import

2. Choose General->Existing Projects into Workspace

3. Click the Browse button next to “Select root directory”

4. Browse to the SDK directory in the workspace folder

5. Select ‘org.rifidi.app.template’

6. Select ‘Copy projects into workspace’

7. Click Finish

Running the project
Once you’ve imported the template, modify it by putting a print line in the start method so that you will

see that the project is running and started. Now you can run the edge server from within eclipse.

1. Open the run configuration (Run->Run Configurations)

2. Select the ‘org.rifidi.app.template’ project in the run configuration

3. Click Apply and Run

At this point you should see log output in your console to indicate that the Edge Server has been

launched. At some point you should also see the debug output that you added to the template.

Setting up Configuration Files (optional)
The Rifidi® Edge Server can make use of several configuration files when it starts up if they are available

on the system. You can set the path to these configuration folders using the ‘org.rifidi.home’ system

property. By default, it is configured to point to the Rifidi-SDK/RifidiHome directory.

 config/rifidi.xml – a file to save reader adapter configurations

 logging.properties – a file that controls the logging output of the edge server

 applications folder – contains properties for each application that starts up. For more

information see the section in this document on properties for applications

http://wiki.rifidi.net/index.php?title=Edge_Server_Development_Environment

7

 When running the edge server from within eclipse, you do not use a edgeserver.ini file for

system properties. Instead, put the system properties in the run configuration.

Notice that when the edge server starts up, it prints a line that says “All Rifidi® configuration paths

relative to <path>”. This is where the Rifidi® edge server is looking for the properties listed above.

Additional Development using Jumpstart Examples
When adding more functionality to your Rifidi® application, check out the Jumpstart examples on our

wiki. They can help you accelerate development. The Jumpstart examples can be found at the wiki.

Here are some of the key examples:

 Database Jumpstart

Instead of importing the project template you can import the DB application. Follow the steps

described in the Database Jumpstart wiki page , then run the project and set up the

configuration files. Finally, export and deploy the DB application.

 JMS Jumpstart

 Cloud Jumpstart

 Rifidi® RFID Services Integration Jumpstart

 Restful Service Integration Jumpstart

 Rifidi® Management API Jumpstart

Follow each Jumpstart’s description as outlined on the wiki.

Rifidi® Edge Server How-To’s
For a number of developer tasks there are How To’s documented that help guide you through a specific

task. This guide includes configuration, development, and deployment tasks and is documented on the

wiki.

Viewing and Modifying the Rifidi® Source Code
If you desire to change existing Rifidi® Edge Server functionality, you can do this by mofiying its source

code. Because the Rifidi® source code is included in the SDK as source plugins, you do not need to

download the source code separately to view or modify it. There are two main ways to view the source

code.

If your application is using a class or interface from the SDK, you can simply right click on the class in the

source code and select “Open Declaration”. This will let you view the source code for the class.

http://wiki.rifidi.net/index.php?title=Developer%27s_Quick_Start_Reference
http://wiki.rifidi.net/index.php?title=Database_Jumpstart
http://wiki.rifidi.net/index.php?title=JMS_Jumpstart
http://wiki.rifidi.net/index.php?title=Cloud_Jumpstart
http://wiki.rifidi.net/index.php?title=Rifidi_Services_Jumpstart
http://wiki.rifidi.net/index.php?title=Restful_Service_Integration_Jumpstart
http://wiki.rifidi.net/index.php?title=Rifidi_Management_API_Jumpstart
http://wiki.rifidi.net/index.php?title=Edge_Server_HOWTOs

8

If you want to see an entire source code plugin, open the plugins view in eclipse (Window->Show View-

>Other->Plugins). Now right-click on the plugin that you want to view and select import as->Source

Project. This will allow you to not only view the source for the entire plugin, but also allow you to make

changes to the source. To run the edge server with your new changes, open up the run configuration,

select the plugin from the workspace and deselect it from the target platform.

Build Rifidi® Edge Server from Source
If you would like to build the edge server from source you have two options:

 In a Linux environment by going to the Rifidi-SDK directory and typing “sh build.sh”, or

 Any changes you make to the core product (including any additions) can be exported to an OSGi

bundle jar, added to the “plugins” folder in a Rifidi install and the “bundles.info”. You can find a

description how to add OSGi bundles here.

How to build the Rifidi® Edge Server from Source is also described on the wiki.

Best Practice for Designing a Rifidi® Application
When you start out developing a Rifidi® system, consider a best practice approach. We have

documented a method outlining steps to building a Rifidi® application on the wiki. The steps include

objectives, setup, design, and other topics.

http://wiki.rifidi.net/index.php?title=How_to_add_OSGI_Bundles
http://wiki.rifidi.net/index.php?title=Build_Rifidi_Edge_from_Source
http://wiki.rifidi.net/index.php?title=Best_Practice_for_Designing_a_Rifidi_APP

9

Rifidi® Edge Server Architecture
This chapter explains the architecture of the Rifidi® Edge Server at a high level. The Edge Server is

broken up into three conceptual layers. The Sensor Abstraction Layer provides a common API to

integrate with sensors to collect various kinds of data from them. The Application Engine Layer performs

custom business processing rules on the data. The Communication layer (sometimes referred to as the

integration layer) provides a means to integrate the business events collected in the Application layer

with other systems (such as databases or ERP systems). In addition, starting with version 3.1, Rifidi®

Edge Server offers an Operations, Administration & Management layer that exposes many internal

functions via a restful services interface.

Sensor Abstraction Layer
The purpose of the edge server is to connect to any kind of sensors (e.g. RFID readers, Barcode readers,

Mobile Devices) and collect information from them. In many scenarios, this consists of connecting to a

Gen2 fixed reader (such as Alien 9800, Motorola LLRP, etc), and collecting EPC information. However,

the edge server is designed in a way so that so that it can collect many kinds of data (active, passive, etc)

10

from many kinds of devices. This layer allows users to connect to devices in a sensor-agnostic way to

collect the kind of data required for the application.

Application Engine Layer
For most applications it is not desirable to save every event that the sensors produce. Many sensors can

send 1,000 of events a second, a large number of which might be duplicates. Most applications are

interested in events that are one-level higher than the raw events produced by sensors. For examples,

an ERP system is probably interested in the event of a box arriving in area 1, and it is not desirable for

the ERP system to do the work of filtering and processing all of duplicate reads the sensor produces.

Complex Event Processing (CEP) is a paradigm of viewing data as ephemeral events (i.e. a stream

consisting of non-persisted events) and identifying meaningful (i.e. business) events from the stream

using rules. Rifidi® Edge Server uses a Complex Event Processor called Esper. It allows you to write

queries using an SQL-like syntax. An example query to get tags from a particular reader might look

something like this:

select * from ReadCycle where ReaderID='gate_1'

The application layer lets developers write custom business logic that uses Esper to filter, aggregate and

process events produced by the Sensor. The applications in this layer can perform custom business logic

based on the tags that are seen. For example, one application might alert a warehouse manager via an

email if a tag that matches a certain pattern is seen in a particular area. Another application might

correlate barcode reads with RFID tags and write the association to a database.

Communication Layer
After data has been processed, it probably needs to be handed up to some kind of application-

dependent system. For example, some users might want the data to be stored in a database, others

might want it to be pushed into an ERP system like SAP or handed to a Rich User Interface of some sort.

The edge server has several built in connectors to use, namely JMS and Web Services (via Spring's

remoting framework). However, as this is application dependent, it is possible to write your own

connector (such as a TCP/IP socket connection) if the application needs it.

Operations, Administration & Management Layer
The purpose of the OA&M layer is to expose Rifidi® internal functions to the developer dynamically at

runtime. Many of those functions have been available in prior versions already via RMI, but are now

offered via REST Services calls.

Sensor Layer
The sensor layer allows the edge server to connect to various kinds of sensors and collect data from

them. The kinds of sensors can be wide ranging, from network-enabled Gen2 RFID readers to barcode

scanners to JMS queues of events. In addition, the events can be of various types. The most common

events are Gen2 RFID, but other event types can be collected as well, such as barcodes and GPIO events.

http://wiki.rifidi.net/index.php?title=Edge_Management

11

In addition to collecting events, the sensor layer allows some level of sensor configuration. The level of

configuration depends on the capabilities of the sensor and how much works has been put into the

adapter. For the most part, however, sensor configuration is normally handled by a technician when first

setting up the sensor. The sensor is either then configured to send events back to the edge server or the

edge server will poll the sensor for events. For the vast majority of the cases, once a sensor had been

configured, it will not change much. Thus, it is easiest in most cases to configure the sensor using a tool

provided by the sensor’s manufacturer.

This section describes the main components of a sensor adapter for the Rifidi® Edge Server. It does not

give a step-by-step walkthrough on how to build an adapter, since the easiest way to learn this is by

looking at the source code for adapters that ship with the Edge Server. In addition the sensor API’s

source code is well documented, so it is recommended to look into that. This chapter serves as a guide

on how the various pieces of the sensor API work together.

Creating a New Sensor Adapter
 Check our new Sensor API document for tips on how to create a sensor adapter.

Anatomy of a Sensor Plugin
All sensors consist of three main classes:

 A SensorSession class that creates a connection to the sensor and collects data from it. There is

typically one SensorSession per Sensor object. Once a SensorSession is created, it cannot be

changed.

 A Sensor class that creates and maintains SensorSessions. There is typically one Sensor object

for every physical sensor. For example, if you have two Alien readers, you will create two

Sensors. A sensor exposes connection properties (such as an IP and Port) to use when it creates

a new session. A sensor also has an ID to identify it from the OSGi command line. For example, if

you have two Alien readers, you might have two Reader IDs called Alien_1 and Alien_2.

 A SensorFactory class that creates Sensors. There is one SensorFactory per Sensor type. For

example, there is one SensorFactory for an Alien plugin. If you have two Alien readers in your

infrastructure, you will use the AlienSensorFactory to create both AlienSensors. The

SensorFactory. A SensorFactory has an ID to identify it from the OSGi command line.

In addition, all but the most basic of sensors will have Commands. Commands interact with a sensor. For

example, a poll command might ask a sensor for the tags that it can currently see. There are two types

of commands. Single-Shot (or one-time) commands are intended to be executed only once. Repeated

commands are intended to be scheduled for repeated execution. There are three classes every

command will need

 Command – The command class is a runnable which is executed by a session. It is intended that

the command should execute quickly. That is, it should avoid sleeping or long running loops.

Once a command is created, it cannot be changed.

12

 CommandConfiguration – The CommandConfiguration creates Commands. Like the Sensor, it

can expose properties which it uses when creating the Command. CommandConfigurations have

IDs used for controlling them from the OSGi command line.

 CommandConfigurationFactory – A factory that produces CommandConfigurations. There is one

factory per CommandConfiguration type.

Finally, sensors that need to allow applications to access their GPIO capabilities can implement the

GPIOService. This service allows application-level access to querying GPI state and setting GPO state.

Sensor Sessions
The Sensor Session is the most important part of a sensor adapter. It has three main roles:

1. Connection Logic – The sensor session contains the logic for connecting to and maintaining a

connection with a sensor. Well written sensors sessions should normally detect when a sensor

has been disconnected and attempt to reconnect if possible.

2. Command Execution – The sensor sessions have to ensure that commands issued to sensors are

carried out in a thread-safe way.

3. Protocol Parsing – It is the responsibility of the sensor session to parse incoming messages

according to the protocol that the sensor uses.

The Sensor API in the Rifidi® Edge Server provides several base classes that implementations can extend

which handle common cases. For example, because TCP/IP is a typical protocol used for connecting to

readers, the API supplies an abstract class that handles TCP/IP connections robustly (it can detect if the

socket is closed and attempts to reconnect). In addition, several other classes are provided that handle

various kinds of connections.

Some kinds of command messages are often necessary to control the sensor. For example, some

sensors require a command to tell sensor to start sending back tag reads. For others, it is necessary to

poll the sensor to ask if it has seen any new data. It is the job of the sensor session to ensure that only

one command is issued at a time and to allow commands to be scheduled for repeated execution if

necessary.

When developing a sensor adapter, most of the work will typically go in to protocol parsing, since this is

what varies widely from sensor to sensor. For example, the LLRP sensor sends back byte messages that

are encoded according the LLRP specification. The Alien reader sends back clear-text strings. Most

barcode readers will send back the barcode that they read.

The end goal of a sensor session is to parse events that comes back from a sensor and put them into the

Esper event engine. From there, the Application Event Layer can process the events. Since many

applications built on top of the Rifidi® Edge Server use Gen2 RFID readers, the Rifidi® API provides a

common structure for Gen2 tag data. For more information on this, please see the wiki.

http://wiki.rifidi.net/index.php?title=ReadCycle_Class_Hierarchy

13

One last note on sensor session development: It is common for network-enabled readers to have one

channel that is intended for interactive communication in a request-response mode, and one or more

passive channels which the reader uses to send events on. For example, the Alien reader has an

interactive channel on port 23. You can connect to this port and send commands and receive responses.

You can then configure the reader to send back tag data and GPIO data to different ports. The Alien

reader adapter in the edge server has one master sensor session (the interactive session) and has two

“slave” sessions (one for passively receiving tag data, and one for passively receiving GPIO data). This

master-slave pattern is common and typically works out well.

The following sections describe abstract classes that can be used when developing a Sensor Session

class.

AbstractSensorSession

The AbstractSensorSession contains logic for executing commands. It uses A

ScheduledThreadPoolExecutor to schedule commands. This logic should work for every SensorSession. It

does not contain any logic for connecting to readers.

Many sensor adapters will be able to make use of a subclass of AbstractSensorSession that already

handles connection logic. For example, readers that connect via TCP/IP or Serial can most likely inhert

from a subclass. You should only have to subclass AbstractSensorSession directly if you need your sensor

communicates via some other kind of protocol. In addition, some sensor manufactures will provide a

java jar which contains and API for connecting to their reader. If this API contains connection logic, you

can inherit from AbstractSensorSession directly and rely on the manufacturer’s API to do connection

logic.

AbstractIPSensorSession

This class handles the connection logic for a sensor which communicates via TCP/IP. It is used for

interactive sessions (it can both send and receive messages). However, you should most likely not

subclass this class directly. Instead, subclass either the AbstractPollIPSensorSession or the

AbstractPubSubIPSensorSession class. The difference between these two classes is the way in which

messages from the sensor are delivered. If messages from the reader are delivered synchronously (that

is that you expect a response for every command that you send), then use the Poll session. If messages

are delivered asynchronously (that is for each command you send to the reader, the reader might send

back multiple responses or none at all), use the PubSub session.

AbstractServerSocketSensorSession

Use this class for passive TCP/IP sessions. It will open up a socket and passively listen for a sensor to

send data to it. It cannot reply back to the sensor. It is often uses for “slave” sessions such as the GPIO

session for an Alien reader. It can also be used to integrate hand held readers into the edge server. A

handheld reader that is connected to a wifi network could just send data to the port for example.

AbstractSerialSensorSession

This sensor session uses the RXTX library to connect to a serial port. With a serial connection it is not

possible to detect if a connection has been broken or not.

14

Sensors
The purpose of the Sensor class is to create and maintain an immutable instance of a sensor session.

Typically, a sensor will have only one session. Once the session is created, it should not be changed. If

something needs to change on the session (such as the port that the session is connected to), the

session must be destroyed, the property must be changed on the sensor, and the session must be

created again.

Sensors contain connection properties (such as hostname, port, etc). These properties are exposed to

the OSGi command line via getter and setter methods. For example, a sensor might have a method with

this signature

Public void setPort(Integer port)

This sensor exposes the port property to the OSGi command line. A user can then change the port with

the ‘setproperties’ OSGi console command.

Each sensor has an ID that is used to identify it on the OSGi command line. If you type in ‘readers’ you

will get a list of the sensors that have been created.

There is normally one Sensor instance per physical sensor device. Subclasses should extend

AbstractSensor.

Sensor Factories
A Sensor Factory creates instances of Sensors. There is one instance of the SensorFactory per sensor

adapter type. For example, there is one AlienSensorFactory and one LLRPSensorFactory available when

the edge server starts up. These factories can create multiple instances of Sensors.

Each sensor factory has an ID that is used when creating new Sensors.

Subclasses should extend AbstractSensorFactory.

Persistence
Sensors and Sessions are persisted to an XML file when the ‘save’ OSGi command is issued. When the

edge server restarts these sensors and session will be recreated, and the session will resume their saved

state.

General Purpose I/O
Many popular RFID readers offer General Purpose I/O capabilities. This allows the readers to interact

with other devices. For example, a reader might be configured to start reading when a photo eye

detects a forklift in the near vicinity. Using a photo eye as input is an example of GPI. Other times, a

reader might want to send some output to another device based on some logic. For example, a reader

might want to light up a green light if a box belongs in a certain area and a red light if the box does not

belong there. This is an example of GPO.

15

Often, GPIO data needs to be used in the application layer. For example, suppose different business

logic should be executed depending on which photo eye saw a forklift. In this case, the reader should be

configured to send back GPI events, and the sensor session can put the GPI events into the Esper engine.

Then, the application can execute the proper logic based on the events that it saw in Esper.

GPO differs from GPI in that it necessitates that the application actively controls the reader rather than

passively listen for events from the reader. In the previously mentioned green light/red light example,

only the application knows if a box belongs in a certain area or not (presumably from a database look

up). The sensor adapter and physical reader are just reporting back tags. This means the application

must tell the sensor to turn on a green light or a red light.

To meet this need a sensor adapter can implement the AbstractGPIOService, which has a few abstract

methods in it that allows control over the GPIO capabilities of the reader. The sensor can then put this

service into the OSGi registry, and the application can look it up and use it as it needs to. For more

information about how to implement this, please see the AlienGPIOService or AwidGPIOService classes.

Tag Writing
Tag writing is supported by the Rifidi® Edge Server starting with version 3.1.

The LLRP Encode Command can be used to encode a new tag with the following operations:

Order: operationCode

 1 - LLRPAccessPasswordWrite

 2 - LLRPEPCWrite

 3 - LLRPKillPasswordWrite

 4 - LLRPEPCLock

 5 - LLRPKillPasswordLock

 6 - LLRPAccessPasswordLock

What are EPC, Kill Password, Access Password:

 EPC is the GEN2 EPC ID for a Tag
 Kill Password is used to set the password necessary to kill/destroy a tag for future use (by

default there is no password (value(0))
 Access Password is used to perform tag writes such as EPC, Kill Password, Access Password (by

default there is no password (value(0))
 C1G2Write and C1G2Lock are the LLRP Access Spec operations used

Command:

 llrpencode/{readerID}/{sessionID}/{tag}
Performs all LLRP Encoding operations for a new RFID Tag.

Example:
http://localhost:8111/llrpencode/LLRP_1/1/111122223333444455556666

Prerequisites:

http://localhost:8111/llrpencode/LLRP_1/1/111122223333444455556666

16

 Only one tag can be present (this is not a Bulk encoding operation)

 Must be a LLRP reader

 Must be a valid readerID and sessionID

 Tag must be evenly divide by 4 (word in hex) and tag must be able to support length

 Access password and kill password must be evenly divide by 4 (4 or 8 characters/1 or 2
words) or 0

 Only one encoding session per reader can be active at one time

All LLRP Encode operations performed are returned asynchronously to an MQTT Topic if the MQTT
variables are defined globally, otherwise synchronous response.

 Global variables:

-Dorg.rifidi.llrp.encode.mqttqos=2 -- quality of service level

-Dorg.rifidi.llrp.encode.mqttbroker=tcp://localhost:1883 -- MQTT

broker URL. If set, received response of encode operation is posted to

this queue in asynchronous mode. mqttqos and mqttclientid must be set

too in order to post to queue.

-Dorg.rifidi.llrp.encode.mqttclientid=llrpEncodeId

LLRP Encode Response

All LLRP Encode operations performed are returned asynchronously to an MQTT Topic if the MQTT

Success Message:

<?xml version=”1.0” encoding=”UTF-8”?>

<response>

 <message>Success</message>

</response>

Fail Message:

<?xml version=”1.0” encoding=”UTF-8”?>

<response>

 <message>Fail</message>

 <Description> LLRP Message returned goes here such as Tag mask and

Tag data not matching </Description>

</response>

LLRP Encode Operations Response (if asynchronous)

 Topic naming convention: {readerID}/encode

Success Message:

<encodeMessage>

<status>Success</Status>

</encodeMessage>

17

Fail Message:

<encodeMessage>

<status>Fail</Status>

<operationList>

 <operation>EPCWrite:Success</operation>

 <operation>KillPasswordWrite:Success</operation>

 <operation>AccessPasswordWrite:Success</operation>

 <operation>EPCLock:No_Response_From_Tag</operation>

 <operation>KillPasswordLock:Success</operation>

 <operation>AccessPasswordLock:Success</operation>

</operationList>

</encodeMessage>

LLRP Encode Single Shot Command

These commands are used to perform single operations and override Global properties. All values must
be supplied in request. Note: All MQTT (if set), timeout tagmask and epctarget always come from Global
Variables.

Command:

 /llrpencode/{readerID}/{sessionID}/{operationCode}/{properties}
Enables one to call a single Encoding operation for a tag.

List of operationCodes:

 LLRPEPCWrite
 LLRPKillPaswordWrite
 LLRPAccessPasswordWrite
 LLRPEPCLock
 LLRPKillPasswordLock
 LLRPAccessPasswordLock

Examples:

 LLRPECWrite - Used to Write a EPC ID

http://localhost:8111/llrpencode/LLRP_1/1/LLRPEPCWrite/accesspwd=12345678;tag=00000000
0001111111111268

 LLRPKillPasswordWrite - Used to Write a Kill Password
http://localhost:8111/llrpencode/LLRP_1/1/LLRPKillPasswordWrite/accesspwd=12345678;killpw

d=87654321

http://localhost:8111/llrpencode/LLRP_1/1/LLRPEPCWrite/accesspwd=12345678;tag=000000000001111111111268
http://localhost:8111/llrpencode/LLRP_1/1/LLRPEPCWrite/accesspwd=12345678;tag=000000000001111111111268
http://localhost:8111/llrpencode/LLRP_1/1/LLRPKillPasswordWrite/accesspwd=12345678;killpwd=87654321
http://localhost:8111/llrpencode/LLRP_1/1/LLRPKillPasswordWrite/accesspwd=12345678;killpwd=87654321

18

LLRP Encode Single Shot Operations Response

If MQTT Variables are defined globally then operations result response will be sent to MQTT topic,

otherwise response is synchronous.

 For details how to use these features see the description on the wiki.

Application Layer
The purpose of the Sensor Layer is to collect data from sensors and put them into Esper. The purpose of

the application layer is to perform business logic on the data that the sensors collect. The application

layer is intended to be general enough to support a wide variety of applications, but provide some tools

that are common to many applications.

This section starts out by taking an in-depth look at the Rifidi® Application API and how to use it. It then

details the Rifid Services, which capture common patterns seen across many RFID applications. These

services allow you to create applications without have to write Esper statements. Finally it describes

some of the application that ship with the Edge Server which are useful for testing and debugging

applications and sensor plugins.

Rifidi® Application API
Rifid Applications are at the heart of the Application Layer; these classes are used to add custom Esper

statements to look for events, subscribe to Rifidi® services, and integrate with existing infrastructure

such as databases and JMS queues.

In order to provide consistent development, deployment, and management of Rifidi® Applications, all

applications should extend AbstractRifidiApp. This class provides a base set of services to Rifidi®

Applications, including:

 Life cycle management (starting and stopping the application)

 Configuration management (Using property files to provide input parameters to the application)

 Esper management (Ensuring that Esper is used correctly)

 Plugging into the OSGi console (Allowing your application to be controlled by the OSGi

command line)

There are two pieces to every application. The first is the Application class itself.

Public class MyApp extends AbstractRifidiApp{

 Public MyApp(){

http://wiki.rifidi.net/index.php?title=LLRP_Tag_Encoding

19

 super(“group”, “app”);

 }

 @Override

 public void _start(){

 //insert code here to create esper statements or subscribe

 // to rifidi services

 }

 @Override

 public void _stop(){

 //insert any clean up code here

 }

}

The second part is the Spring XML which creates the application, injects the application with any

dependencies it requires (such as rifidi services or database connections, etc) and registers the

application in the OSGi service registry. This xml file goes in the “META-INF/spring” folder in the bundle.

The required XML namespaces have been removed from the following example for the sake of brevity.

<!-- Create the application object -->

<bean id=”app1” class=”com.mycompany.MyApp”/>

<!-- register the app in the OSGi service registry -->

<osgi:service ref=”app1” interface=”org.rifidi.edge.api.RifidiApp”/>

The best way to get started with your own application is to import the Template application from the

SDK and begin modifying it. In addition, there are several well-documented example applications in the

SDK which demonstrate many of the features of the Application API. Exploring those examples are the

best way to get a feel for how to code using the API.

You can start, stop, and monitor applications using the RifidiAppManager. Open up the OSGi

console and type

>apps

You will see a list of applications printed out. Each line contains

20

 The application ID (a numeric ID)

 The application group

 The application name

 The state of the application (started or stopped)

You can start a stopped application using the startapp command. Likewise, you can stop a started

application using the stopapp command.

The rest of this section goes into more depth about the services offered by the AbstractRifidiApp

abstract class.

Lifecycle Management

Applications can be in one of two states: started or stopped. The AbstractRifidiApp class provides

two methods for developers to override. The _start()method is where most of the application code

belongs. It is used to add Esper statements and listeners, add custom Esper event types, subscribe to

Rifidi Services, or do any other work that needs to be done when starting the application. The _stop()

method is used to do any cleanup work necessary, such as unsubscribing from Rifidi Services.

When a bundle that contains one or more applications starts up, it should register its application(s) with

the AppManager. It does this by exporting the application into the OSGi registry under the RifidiApp

interface in the spring XML. The AppManager automatically keeps track of any object in the OSGi

registry that is exported under the RifidiApp interface. It assigns this application and ID and

automatically starts it if lazyStart() returns false. The AppManager allows users to start and stop

the applications.

Configuration Management

One common need of many applications is to be able to externalize configuration properties to files so

that they can be changed easily. The Rifidi® Application API gives you an easy way to do this using a

standard directory structure and file-naming convention.

At this point it is important to note that each Rifidi® App must provide in its constructor a ‘group name’

and an ‘app name’. Groups are logical sets of applications. For example, the Acme Corporation might

have one group of applications called ‘receiving’ which handle in-bound packages. The might have

another group of applications called ‘exporting’ which handle out-bound packages. The main reason for

using a group is that applications within a group can share configuration files.

There are three main types of configuration files that the Application API makes available to Rifidi® Apps

 Property Files follow the conventional name=value format. They are read in when the

application starts and are made available in the initialize() method.

21

 Read zone files are stored in the readzones directory in a group directory. Each one describes a

different logical readzone. These are useful with Rifidi® Services to determine which logical read

zones a particular application is interested in.

 Data files are stored in the data directory. These files can contain any data the application

needs. Applications can both read and write these files.

Properties

If you open up the ‘applications’ directory in the ‘RifidiHome’ directory of the SDK, you will notice

several sub directories. The directories at this level are so-called group directories. The names of these

directories correspond to the group names that applications provide in their constructor. If you open up

a group directory, you will notice some property files. Each group directory can contain one property file

whose name is the ‘group name’ string that the applications use in their constructor. Properties in this

file will be shared with all applications in the group. In addition, there can be one property file per

application. Each of these property files will share their name with the ‘app name’ of their

corresponding application. If a property is both in the group property file and the application property

file, the value in the application property file will be used.

For example, the Acme Corporation might use the following directory structure for their receiving and

exporting applications. Folders are in bold and property files are in italics.

 RifidiHome

o applications

 Receiving

 Receiving.properties

 App1.properties

 App2.properties

 Exporting

 Exporting.properties

 App3.properties

In this example, the Acme Corporation has two groups (Receiving and Exporting) and three applications

(App1, App2, and App3). App1 and App2 are both in the Receiving group. They share properties that

are in the Receiving.properties file. App3 is in the Exporting group.

Applications can should access properties by calling the getProperty() method . This method

should be called in the initialize()method of the Rifidi® App.

22

All Rifid applications use a property called LazyStart to determine if the application should be

started as soon as it is loaded. If this property is set to true, the application will not be started

automatically. If it is set to false, then it will be started automatically. If the LazyStart variable is not

defined in a property file, it defaults to false.

Read Zones

One common requirement for RFID applications is to define logical read zones for applications. For

example, a particular application might only be interested in tags from antennas 1 and 2 of a certain

reader. To this end, you can create readzone property files in the readzones directory of a group. These

files will be read in and ReadZone objects will be automatically created.

The readzone files contain the following properties:

 readerID – the internal ID used to identify this reader. This ID corresponds to the Sensor ID used

in the Sensor layer

 antennas – an optional comma-delimitated list of integers which correspond to the antennas

which should be used.

 tagPattern – an optional regular expression defining a pattern which can be used to filter tags

based on their IDs

 matchPattern – an optional boolean used with the tagPattern. If set to true accept only the tags

that match the pattern. If set to false, filter out tags that match the pattern

The names of the readzone files follow a naming convention: readzone-[ID].properties. They

start with the word ‘readzone’. The word in between the ‘-‘ and the ‘.’ characters is the ID of the

readzone.

Readzones are read in when the application starts. They can be accessed using the getReadZones()

method in the AbstractRifidiApp class, which returns a HashMap where the keys are the readzone IDs

and the values are ReadZone objects.

The location of the readzone properties file should be placed in while developing in Eclipse,

it is

Rifidi-SDK\RifidiHome\applications\[your application name]\readzones (under your

workspace)

Once you export your application, it will be at

applications\[your application name]\readzones (under the server home directory)

For convenience, most of the Rifidi® Services use ReadZone objects to define their data windows. In

addition, you can use the buildInsertStatement() in the EsperUtil class to build an esper

statement that will insert tags into a given window that match some supplied readzones.

23

Advanced Read Zone Filtering

Starting with version 3.0 Rifidi implements a feature called “Advanced Read Zone Filtering”. Using

regular expressions a readzone can be defined more flexible, for example as a set of readers. The

useRegex flag needs to be set in the Rifidi Application (or a Rifidi Service) and the readzone needs to be

configured in the readzone properties file. Below is an example how this feature can be applied, in this

case in the readZoneMonitoringService:

 In the application code or Rifidi Service (here: readZoneMonitoringService) the useRegex flag is

set to true:

this.readZoneMonitoringService.subscribe(weigh_station_subscriber,

weigh_station, this.weighstation_timeout, TimeUnit.SECONDS, true);

 In the readzone properties file define the readzone using a regular expression:

readerID=reader1|reader2|reader3

In this example, the readzone consists of 3 readers.

Data Files

Many times, it is useful for applications to read and write files. The App API provides a mechanism to

make it easy for applications to do this. Data files reside in the ‘data’ directory, and they share a naming

convention that is similar to the readzones: [prefix]-[id].[suffix] They can be accessed

using the getDataFiles() method . This method takes in a String which is the prefix. When this method is

called all data files with the given prefix are read in, turned into byte arrays and made available as a

hashmap. A particular file is located from within that hashmap using its ID.

Files can also be written to the data directory using the writeData() method. This method will write

a new file when it is called.

Esper Management

Esper is a complex event processing engine. It allows users to insert events in the form of java objects

into the engine and look for patterns in this data using queries. It is a powerful tool for building RFID

applications because it allows Sensors to push events into the engine and applications to state the

patterns they are looking for. Then applications are notified when an event happens that match the

pattern. Because events are filtered in memory, it allows RFID applications not to rely on databases and

enables an event-driven architecture.

The Application API helps developers keep up with two aspects of esper: statements and custom event

types. Please consult the Esper documentation online for information about esper syntax and semantics.

Statements

Esper’s query syntax is much like SQL. Applications can add these Esper ‘statements’ to the Esper

runtime. In addition, they can define listeners to certain statements. Because it is important to keep up

with which statements have been added and to make sure statements are removed when the

24

application starts up, the Abstract Rifidi® App provides two methods that should be used when adding

statements and listeners.

 addStatement(String) is used to add a single statement to the esper runtime

 addStatement(String,StatementAwareUpdateListener) is used to add a

statement and a listener to that statement. The updateListener will allow you to handle any

events which trigger the statement.

By using these methods to add statements, there is no need to remove the statements when your

application stops. This is handled automatically for you.

Custom Event Types

The Esper runtime must know ahead of time what kind of events will be put into it. There are two types

of events: Java objects and Map events. Please see the Esper documentation about how to access

properties from these events in statements.

The Rifidi® Edge Server has several kinds of events already defined in the Esper runtime that every

application can make use of, such as ReadCycle, TagReadEvent, GPIEvent, and GPOEvent. If your

application needs to add its own custom event type, it can do so using any of the addEventType()

methods. Using these methods will ensure that the Event Types are properly removed from the runtime

when your application stops.

Plugging into the OSGi console

The OSGi console allows users to access their application via a command line. It is often useful for

administration and testing purposes. Each application can contribute to the console by overriding the

getCommandProvider() method. Contributing an object that implements the

CommandProvider interface will allow the application to expose its own commands on the OSGi

command line.

Rifidi® Services
Esper is a powerful tool for building RFID applications. However, many RFID applications have common

needs. For these scenarios, the Rifidi® Edge Server offers ‘Rifidi Services’ which capture a few common

RFID use cases and allow your application to subscribe to these patterns without the need to write

custom Esper statements.

In general, to subscribe to a service you need to follow these steps:

1. In the spring xml for the application, get a hold of the service that you want to subscribe to.

Inject it into your application

2. In your application, implement the appropriate subscriber interface

3. In the _start() for your application, subscribe to the service passing in the subscriber and any

parameters needed.

25

4. In the _stop() method for your application, unsubscribe from the service.

Read Zone Monitoring Service

The Read Zone Monitoring service notifies subscribers when a tag enters a particular read zone and

when it leaves a read zone.

To subscribe to this service, put the following in your spring.xml file:

<osgi:reference id=”ReadZoneService”

interface=”org.rifidi.edge.api.service.tagmonitor.ReadZoneMonitoring

Service”/>

You should implement the ReadZoneSubscriber interface, which gives you two methods:

tagArrived(TagReadEvent tag)

tagDeparted(TagReadEvent tag)

Stable Set Service

The Stable Set Service notifies subscribers when a given amount of time has passed without any new

tags having arrived. It then passes all the tags seen in that interval to the listener. This pattern is often

useful when there is a concept of children tags and a parent tag. For example, imagine that you want to

group items to a container. You put all the tags in the field of view of an antenna, and you want to be

able to process all the tags seen as a group.

To subscribe to this service, put the following in your spring.xml file

<osgi:reference id=”StableSetService”

interface=”org.rifidi.edge.api.service.tagmonitor.StableSetService”/

>

You should implement the StableSetSubscriber interface, which gives you the following method:

stableSetReached(Set<TagReadEvent> stableSet)

Unique Tag Batch Interval Service

The Unique Tag Batch Interval Service periodically notifies subscribers of unique tags that have been

seen in the read zone since the last notification.

To subscribe to this service, put the following in your spring.xml file

<osgi:reference id=”UniqueTagBatchIntervalService”

interface=”org.rifidi.edge.api.service.tagmonitor.UniqueTagBatchInte

rvalService”/>

26

You should implement the UniqueTagBatchIntervalSubscriber interface, which gives you the following

method:

tagBatchSeen(Set<TagReadEvent> tags)

Unique Tag Interval Service

The Unique Tag Interval Service notifies you the first time a unique tags is seen at a read zone and

periodically after that if the tag is still in the read zone.

To subscribe to this service, put the following in your spring.xml file

<osgi:reference id=”UniqueTagIntervalService”

interface=”org.rifidi.edge.api.service.tagmonitor.UniqueTagIntervalS

ervice”/>

You should implement the UniqueTagIntervalSubscriber interface, which gives you the following

method:

tagSeen(TagReadEvent tags)

Sensor Status Monitoring Service

This service is slightly different from the others mentioned so far. Instead of notifying subscribers about

Tag events that happen, it notifies subscribers about changes to the sensor layer. It’s useful for giving

your application access to when Sensor connect or disconnect.

To subscribe to this service, put the following in your spring.xml file

<osgi:reference id=”SensorSubscriberService”

interface=”org.rifidi.edge.api.service.sensormonitor.SensorStatusMon

itoringService”/>

You should implement the SensorStatusSubcriber interface, which gives you the following method:

handleSensorStatusEvent(SensorStatusEvent event)

RSSI Monitoring Service

This service monitors which readzone returns the highest average RSSI value for a tag in a given

duration. It returns a reader and epc code when the reader with the highest RSSI value changes for the

tag over the given timeframe. You can use the following parameters to control the behavior:

 rssiInterval (FLOAT); the duration (in seconds) over which all RSSI values will be accumulated to

calculate their average value.

27

 avgRSSIThreshold (Double); minimum RSSI value in order to be considered for building the

average RSSI value. RSSI values below this threshold are ignored. If this value is set to ‘0’, the

parameter is disabled.

 tagCountThreshold (Integer); the minimum number of reads for this tag in the given readzone in

order to be considered by this service. If the number of reads is lower than the threshold, the

reads are ignored. If this value is set to ‘0’, the parameter is disabled.

To subscribe to this service, put the following in your spring.xml file:

<osgi:reference id=”rssiMonitoringService”

interface=”org.rifidi.edge.api.service.tagmonitor.RSSIMonitoringServ

ice”/>

You should implement the RSSIReadZoneSubscriber, which gives you the following method:

tagArrived(List<RSSITagReadEvent> incoming)

The service returns tag id, antenna, readerid and readzone. In the event readzone properties are not

defined or null then readzone will be set equal to readerid (readzone and reader id is by default 1 to 1

relationship).

Note: When using read zones properties file one will need to be sure all reader ids map to a read zone

otherwise there is a chance a tag will not be returned for an undefined reader id. One best practice

is to create a default readzone where you exclude through a regular expression all readzones which

will be specifically defined. An Example regex in readzone property file is

readerid=^((?!reader1|reader2).)*$. This will exclude reader1 and reader2 from the default read

zone and then more specific read zones properties can be defined for the readers such as

associating multiple readzones to a reader by antenna (1 to many relationship) or multiple readers

correlated to same readzone (regex: reader1|reader2) (many to 1 relationship).

How to add a new Service

In order to add a new Service to the Rifidi® Edge Server core, you need to follow the following steps:

1. Add your classes to the package “org.rifidi.edge.api.service.tagmonitor”

2. Add an entry like this to app-api.xml (a spring XML):

<bean_id=”RSSIMonitoringService”

class=”org.rifidi.edge.api.service.tagmonitor.RSSIMonitoringServiceI

mpl”><constructor-arg index=”0” value=”AppService”/><constructor-arg

index=”1” value=RSSI”/></bean>

Give the name you want to the bean ID, and give your implementation class as the class.

Constructor arg 0 must be “AppService”. Constructor arg 1 can be anything that doesn’t already

exist.

28

3. Add an entry like this to app-api.xml:

<osgi:service ref=”RSSIMonitoringServie” auto-export=”interfaces”/>

The ref should be your bean ID.

After that, your service should be available. You can find a description also on the wiki.

Diagnostic Applications
The Rifidi® Edge Server platform ships with several applications designed to help gather information

some diagnostic information and to help developers and administrators troubleshoot common

problems.

GPIO

The GPIO application allows users to interact with GPIO devices (as long as the reader and Rifidi® Edge

Server reader adapter support GPIO). See the help menu on the OSGi console for correct usage of these

commands.

 testGPI - Returns the current GPI state on a reader

 setGPO – Sets a GPO state on a reader

 flashGPO – Changes a GPO state on a reader for a certain amount of time

In addition, there are a few commands which “simulate” GPI events by inserting fake GPI events into the

esper runtime. This is useful for testing and troubleshooting applications which rely on GPI events from

a reader to operate without having to actually have the hardware hooked up.

 simGPIHigh – sends a GPI High event into Esper

 simGPILow – sends a GPI Low event into Esper

 simGPIFlashHigh – sends a GPI high event and then a GPI low event into Esper

 simGPIFlashLow – sends a GPI Low event and then a GPI High event into esper

Serial

The serial application exposes several commands that help you determine which serial ports are

available on your machine. This is often useful when configuring a reader adapter which uses a serial

protocol.

 connectSerial – connect to a certain serial port

 disconnectSerial – disconnect from a certain serial port

 listSerial – List all serial ports available on your machine

http://wiki.rifidi.net/index.php?title=How_to_add_a_new_Rifidi_Service

29

Tags

The tags application allows developers and to gather some information about the tags that the edge

server is gathering.

 currenttags – lists the tags that the edge server can currently see

 recenttags - lists the tags that the edge server has seen recently

 tagrate - lists the number of tags per second that the edge server is current seeing

Tag Generator

This utility allows developers to send ‘fake’ tag events into Esper. It is useful when developing and

testing applications so that you don’t have to have real hardware hooked up to your system to send tags

events into the reader.

It works using a set of two property files, both located in the RifidiHome/applications/Diagnostic/data

directory.

 exposure-<ID>.properties – this file controls how the tags will be exposed to Esper. For example,

it controls the rate at which tags are exposed and triggers to stop exposing them

 tags-<ID>.txt – This file contains the tags to expose along with which reader and antenna

In order to initiate the fake tag reads, use this command:

> startTagRunner <tagFileID> <exposureFileID>

Exposures Files

There are several properties in an exposure file that control how tags are exposed

 exposureType: There are two basic types of exposures: ‘rate’ and ‘delay’. A ‘rate’ type means

that the exposure will attempt to put tags into esper according to a given rate. A ‘delay’ means

that the exposure will expose a defined number of tags with a given delay in between each

cycle.

 stop.count: A count-based stop trigger. The exposure will stop running after the defined

number of tags has been exposed.

 stop.time: A time-based stop trigger. The exposure will stop running after the defined

number of milliseconds

 random: If true, the exposure will pick tags from the tag file at random

 tagRate: Used with ‘rate’ exposureType. Indicates how many tags per second we should

expose to esper

30

 groupSize: Used with ‘delay’ exposureType. Indicates how many tags should be exposed at

once.

 delay: Used with ‘delay’ exposureType. Indicates number of milliseconds to pause in

between exposing a group.

Tag Files

Tag files simply contain the data to expose. Each tag is on a new line. Each line has three comma-

separated fields: the tagID, the readerID, and the antenna ID.

Integration Layer
Once applications have identified the business events they are interested in, they will want to integrate

with existing systems. The Rifidi® Edge Server provides several methods of integration out of the box.

The integration layer is heavily spring based, and in general, you can use many spring technologies inside

of the Rifidi® Edge Server. The following section lists a few of many possible integration technologies.

JMS

The Rifidi® Edge Server runs an embedded ActiveMQ broker. You can change the ActiveMQ’s settings in

by editing the config/rifidi-amq.xml file.

In addition, there is already a preconfigured spring JMSTemplate that you can use to send out messages.

You can get a hold of it in spring with the following code:

<osgi:reference id=”externalJMSTemplate”

interface=”org.springframework.jms.core.JmsTempalte” bean-

name=”externalJMSTemplate”/>

Edge Messaging - MQTT
Prior to Rifidi® Edge Server 3.1 Edge Messaging is available through an Active/JMS interface. Starting

with version 3.1 Edge Messaging is now accessible through MQTT, a light weight IoT messaging protocol

through leveraging Moquette. This now enables Rifidi applications to publish events (captured via Rifidi

Services for example Readzone Monitoring, Stable Set, etc.) to a light weight MQTT messaging queue.

Moquette start by default (see rifidiserver.ini):

-Dorg.rifidi.mqtt.enabled=true

For additional details and examples see the description on the Wiki.

Databases
Out of the box, the Rifidi® Edge Server ships with Derby – an embeddable database. The database starts

up when the edge server starts. One way to access it is using Spring’s JDBCTemplate. Please see spring’s

documentation on how to use the JDBCTempalte. The connection properties you need are

driverClassName=org.apache.derby.jdbc.EmbeddedDriver

http://wiki.rifidi.net/index.php?title=Edge_Messaging

31

url=jdbc:derby:DB_NAME;create=true

In addition, you can extend Rifidi®’s AbstractDBDAO class which might provide a useful interface for

some use cases.

RMI
You can use Spring’s RMIServiceExporter to expose an interface over RMI. Please see Spring’s

documentation for details. We give also a brief explanation on the wiki and explain steps below.

How to connect Rifidi via RMI Client

1. Ensure you set client java property to ensure ssl Cipher matches

javax.rmi.ssl.client.enabledCipherSuites=SSL_DL_anon_WITH_RC4_128_MD5

2. Sample RMI Client code

RmiProxyFactoryBean proxy = new RmiProxyFactoryBean();

proxy.setCacheStub(true);

proxy.setRefreshStubOnConnectFailure(true);

proxy.setServiceInterface(SensorManagerService.class);

proxy.setServiceUrl(“rmi://[replace with ipaddress such as

127.0.0.1]:1101/SensorManagerService”);

proxy.setRemoteInvocationFactory(new

ContextPropagationRemoteInvocationFactory());

proxy.afterPropertiesSet();

SensorManagerService service = (SensorManagerService)

proxy.getObject();

ReaderDTO reader = service.getReader(“LLRP_1”);

}

Amazon AWS
Rifidi® now has support for the Amazon AWS. To learn more about how to connect, please

check our documentation at the wiki.

Operations, Administration & Management Layer
The OA&M section describes how internal functions allowing the management and monitoring of the

edge server and its components are exposed via restful services and how those can be used by a

developer.

Management

Prior to version 3.1 Edge Management has been available only through RMI (currently used by Rifidi®
Workbench, if you are looking for example code). Starting with version 3.1, Edge Management is now
also accessible through Restful Services (leveraging Restlet plugin). Restlet allows all Rifidi® Edge
Management operations that are available through workbench to be accessible via Restful Services.

The types of operations available through Restful Services include:

 All “session” commands (for stopping and starting reader/sensor sessions)

http://wiki.rifidi.net/index.php?title=How_to_connect_Rifidi_via_RMI_Client
http://wiki.rifidi.net/index.php?title=Cloud_Jumpstart
http://restlet.com/

32

 ExecuteCommand and deleteCommand (for commands supported by a sensor such as a tag
read)

 Readers (for getting a list of readers/sensors available on Edge Server instance)

 Commands (for issuing command line operations such as saving the Edge Server configuration
currently in memory)

 Get and Set Properties (for setting and getting sensor properties such as Setting the LLRP Reader
Configuration dynamically)

 Create Reader (for creating a new reader connection)

 Managing Rifidi Applications (for stopping/starting, listing and deploying Rifidi® applicatoins)

For more examples and additional details please read the documentation on the wiki, or the jumpstart
example here.

Monitoring

Prior to version 3.1, Edge Monitoring has been available only through JMX/MBeans via RMI. Starting
with version 3.1 Edge Monitoring is now also accessible through Restful Services. Rifidi® leverages
Jolokia which exposes all JMX/Mbeans via restful services.
The types of components which can be monitored include:

 Java Virtual Machine (Memory, CPU etc.)

 Sensors/Readers (Status, Properties etc.)

 OSGi (Status, Applications etc.)

 Messaging

For examples and additional details please read the documentation on the wiki.

Exporting and Deploying
For help in exporting and deploying a Rifidi®App, follow this 4-step process:

 Step 1: Export the Application Bundles

 Step 2: Create the Application

 Step 3: Deploy the Applications

 Step 4: Starting application by default when Rifidi® Edge Server starts.

The full description can be found on the wiki.

Performance Tuning
For help with improving the performance of Rifidi® Edge Server look at the Performance Tuning Tips on

the Wiki. Those tips include descriptions how to turn off diagnostic and monitoring functionality,

adjusting configuration settings for performance, Esper and other useful tips.

http://wiki.rifidi.net/index.php?title=Edge_Management
http://wiki.rifidi.net/index.php?title=Rifidi_Management_API_Jumpstart
http://www.jolokia.org/
http://wiki.rifidi.net/index.php?title=Edge_Monitoring
http://wiki.rifidi.net/index.php?title=How_to_export_your_custom_Rifidi_application
http://wiki.rifidi.net/index.php?title=Performance_Tuning_Tips
http://wiki.rifidi.net/index.php?title=Performance_Tuning_Tips

33

Examples
 For developers who are new to Rifidi® Edge Server there are several Development Jumpstarts

documented on the wiki. We are introducing some of them in the following sections. Here is a full list of

them:

 HelloWorld App Jumpstart

 Database Application Jumpstart

 MQTT Jumpstart

 AWS / Cloud Jumpstart

 Rifidi Management API Jumpstart

 Dynamic Reader Configuration Jumpstart

 Rifidi Services Jumpstart

 Northwind Application

 Cloud

HelloWorld Application
The HelloWorld application is a very simple Rifidi® application. It uses the ReadZoneMonitoringService

to create a subscriber, and prints tag epc id to standard out when a tag arrives in the read zone. Please

see the description on the wiki for more details.

Database Application
You just purchased an RFID reader and a few tags and are wondering how Rifidi® can help you make use

of your new hardware. A common use case developers want to accomplish is to record when a tag

shows up, and what reader or antenna is “seeing” it, and record this in a database. Our simple DB App

example is doing just that. It generates exactly one entry every time a tag enters the read zone of a

reader and records the timestamp and reader ID.

In order to try out the DB app you can just download the application and the sql file from here, then

install the app and run the sql file to create the table in your database.

If you want to modify the DB app, then download it from here, and import it to your Rifidi®

development environment. You can find all the required steps on our wiki.

The table structure will look like:

http://wiki.rifidi.net/index.php?title=Development_Jumpstarts
http://wiki.rifidi.net/index.php?title=HelloWorld_App_Jumpstart
http://www.transcends.co/www/apps/dbapp/DBApp.zip
https://transcends.svn.cloudforge.com/rifidi/rifidi/trunk/apps/org.rifidi.app.db/
http://wiki.rifidi.net/index.php?title=Database_Jumpstart

34

 To summarize, here are the components you need:

 Rifidi® Edge Server, with the application DBApp and the DBApp.properties file.

 MySQL database, with the db schema installed. Use db.sql file to generate it.

Default values for the database:

dbapp.url=jdbc:mysql://127.0.0.1/db, userr=root, pass=rifidi

You can override these values in the .ini for windows or the "rifidi-server" file for Linux if you

wish.

Northwind Application
After your DB app is running, you could consider a more sophisticated, but also complex application. The

Northwind application example will introduce you to writing custom esper rules. Please go to our

Northwind example on the wiki to find details on this application. However, we do recommend when

you build esper rules, to build them as part of a service as shown in the chapter RIFIDI® Services.

Dynamic Reader Configuration Example
In some situations you might want to update your reader configuration dynamically, during run-time,

based on some business or infrastructure events. This specific example application updates an existing

reader’s LLRP RoSpec configuration in run-time. This could be extended to update other reader

properties or configurations dynamically. The example app can be found on the wiki.

Esper is a trademark of EsperTech Inc. All other trademarks, product names, and company names or logos cited

herein are the property of their respective owners.

http://wiki.rifidi.net/index.php?title=Northwind_Example_Application_-_Advanced_Development_Topic
http://wiki.rifidi.net/index.php?title=Dynamic_Reader_Configuration_Jumpstart

